Ham Satellites A Brief History and a How To....

> by Ed Poccia, KC2LM

Satellites Through the Decades 1957: Russia launches the first satellite

Sputnik I

* 23 inches in diameter
* 184 pounds
* no sensors onboard
* detectable radio pulses
* lasted 21 days

* Propagation of its radio signals increased our understanding of the ionosphere

* Its orbit helped determine density of upper atmosphere

Hams Get Started in the 60s

Only 4 years after Sputnik, hams built Oscar 1

- * 10 pounds
- * 140 mw beacon

- * Launched "piggy-back" with Discovery 36 spacecraft
- * Built in basements and garages
- * Ground stations used signals to measure propagation through the ionosphere
- * 570 hams in 28 countries sent observations
- * Lasted 22 days in low Earth orbit

The Early Birds

Oscar 2: June 1962

* internal temperature measuring sensor

* external coating to provide cooler internal temperature

Oscar 3: March 1965

- * carried a linear transponder
- * operated for 18 days
- * 1000 hams in 22 countries made contacts
- * 50 kHz wide band of uplink signals near 146 MHz with downlink near 144 MHz

The 70s:

Oscar 5: Jan, 1970

* telemetry beacons on 29 MHz & 144 MHz
* had an magnetic attitude stabilization system

Oscar 6: Oct. 1972

* Improved telemetry: internal temps., battery current & voltage

Codestone;
 an early store & repeat messaging system
 <u>* operated for 4 1/2 years</u>

Oscar 7:

known as AO-7, Nov. 1974

* Two Transponders - uplink 146 MHz, downlink 29 MHz - uplink 432 MHz, downlink 146 MHz * First satellite to satellite radio link-up * Operated for 6 1/2 years * Declared dead in 1981 due to battery failure * Back to Life in 2002 and supports contacts during sunlight hours * Build by teams from Australia, Canada & U.S.

Russia's Ham Radio Sputniks RS-1 and RS-2: July 1980

* Transmitted telemetry beacons in CW

- * Receivers had overload breakers
- * Hams transmitting hundreds of watts would cause the "birds" to shut down. Western hams kept shutting off the transponders.
- * 145 MHz to 29 MHz transponder
- * Codestone store and forward mailbox
- * Lasted until 1981

The 80s Oscar 13: Jun. 1988 "The DX Satellite"

- * High elliptical, Molniya Orbit* Apogee of 22,000 miles
- * Perigee of 1500 miles

- * Four transponders; packet, slow scan TV, SSB (voice), RTTY, facsimile & morse code
- * Transponders received at 435 and 1296 MHz
- * Retransmitted at 145, 435, and 2400 MHz
- * Onboard computer managed transponder activation
- * Satellite appears to "hang" in space

K6LIE's DXCC Contacts via Oscar 13

Germany Italy Austria Corsica Saudi Arabia England Crete Hong Kong

Sweden Santa Maria Island **Howland Island** Hawaii **Costa Rica** Wales Japan Plus, Plus, Plus

Impressive, and something to look forward too.

The 90s: Age of the Microsats Oscar 14, AO-14: Jan. 1992

* spent 18 months as a packet store & forward "bird"
* later used to send & receive email in Africa
* In March 2000, returned to Hams use as FM repeater

Oscar 16:

 * A dedicated store and forward file server @ 1200 baud
 * Files & emails could be "broadcast" to stations under the Satellites footprint

Oscar 25: Sept. 1993

- * took pictures for transmission back to Earth
- * measured radiation
- * useful receive & forward message system

The Future

* It's difficult for AMSAT to build & launch a complex bird relying solely on member dues, volunteer workers & donations.

* The German AMSAT organization is building a Phase III, high altitude DX satellite.

* An Phase IV geosynchronous amateur radio multitransponder module to be included on Intelsat

- reside inside the Intel spacecraft
- use a common power source
- promises continuous 24/7 hemisphere-wide communications

ANSAT For Hams interested in the exploration of space

- * Formed in 1969
- * Participates in majority of ham Sat projects
- * Responsible for Breakthroughs:
 - first voice transponders
 - first with "store & forward" messaging
 - first satellite to satellite link
- * A true Volunteer Operation
- * Offers: news, satellite status, pass predictions
- * Operating revenue comes from membership dues
- * Offers satellite tracking software & has links to decode satellite telemetry

Awards: VUCC (100 Grids), AMSAT Achievement (20 States)

Ham Radio & the ISS

Uplink	Downlink	Mode
144.490	145.800	Crew Contact FM Region NA
*145.99	145.800	Packet BBS
*145.825	145.825	APRS Digipeater
	145.490	SSTV
437.800	145.800	FM Repeater

ARISS: Connecting Schools with Astronauts
Access amsat.org for pass predictions
* Temporary Change Currently in Place

The Two Meter ARISS Packet System is Currently Inoperative

The 70cm ISS Packet is Now Functioning on 437.550 MHz. +/- for Doppler

Memory Channel #	Receive Freq.	Trans. Freq.
1	437.560	437.540
2	437.555	437.545
3	437.550	437.550
4	437.545	437.555
5	437.540	437.560

* Change Memory Channels as the Pass Progresses * The 2 mtr. repeater is scheduled to be replaced in late 2017

Active Satellites

amsat.org/status

Satellite	Uplink	Downlink	Mode
Oscar 85	435.172	145.980	FM Repeater
AO-85	w/67 Hz tone		Use 20+ watts
Oscar 50	145.850	436.795	FM Repeater
SO-50	w/67 Hz tone		Dual Band Hts
AO-73 Educational SAT		145.935	BPSK Beacon & Telemetry

* These Ham Sats are a good place to start. They can be accessed easily using minimal equipment and have frequent passes over the American SW.
* The listed frequencies are "central frequencies" and adjustments need to be made to allow for doppler shift.

Doppler Shift

The **doppler effect** is observed whenever the source of waves is moving with respect to an observer. The Doppler Effect for a Moving Sound Source

SO-50

The 2 mtr FM pass band is large enough that adjusting for doppler on 2 meters transmit frequencies is not needed.

Ch #	Name	TX Freq	CTCSS	RX Freq	CTCSS
501	50 +4	145.850	67.0	436.815	None
502	50 +3	145.850	67.0	436.810	None
503	50 +2	145.850	67.0	436.805	None
504	50 +1	145.850	67.0	436.800	None
505	50 74	145.850	74.4	436.795	None
506	SO-50	145.850	67.0	436.795	None
507	50 -1	145.850	67.0	436.790	None
508	50 -2	145.850	67.0	436.785	None
509	50 -3	145.850	67.0	436.780	None

In Practice: The frequency memory set here works better for low angle passes. Adjust Tx frequencies for Doppler for passes with high elevations. (+/- .005 MHz)

Hams Satellites & S.T.E.M.

Decoding Satellite Telemetry

- Graphing internal satellite temperature over time

- Graphing battery voltage & current over time

Communicating Through Satellites

- Reading & Graphing Pass Predictions (reading data charts)
- Azimuth and Elevation (reading compass & protractor)
- Operating TX & Rec., Antenna Alignment & Tuning

Building Satellite Antennas

(use of formulas & measuring devices)

- Simple Fixed Antennas: Helix, Turnstile,

(ARRL Satellite Handbook)

- Hand Held Yagi

- Building models of satellite stabilization systems

Moxon Rectangle

Simple Yagi for the SO-50 Satellite

(without Driven Element, Reflector, Matching Network or Feed Line)

Dual Band Yagi for HTs

* A 1"x2" pine board acts as the boom.
* 1/8 inch steel rods function as elements.
* Feed Line: RG8X, w/four loops of 4" as balun

The driven elements, 2 mtr on one side, 70 cm on the other are mounted to the boom with a bolt connecting the two. Ground lugs hold the elements and have coax leads attached.

Screw electrical caps (**y** into the end of each element for safety.

Turnstile Antenna

Helix Antenna

An axial-mode turnstile antenna consisting of a pair of driven crossed dipoles above a pair passive crossed dipoles serving as a reflector. Ground Plane

A helical antenna is an antenna consisting of a conducting wire wound in the form of a helix. In most cases, helical antennas are mounted over a ground plane. The feed line is connected between the bottom of the helix and the ground plane.

Commercial Satellite Antennas

Elk Log Periodic

Arrow Antenna

Model 146/437-10WBP

elkantennas.com

- * Breaks down to a convenient size in minutes
- * Fits into backpack for Mtn. topping

arrowantenna.com

- * popular antenna for Satellite work
- * \$85 to \$140 depending on features

* \$120

To Work a "Bird"

The SO-50 satellite is a FM Repeater, EZ to work with a HT and a simple home made yagi antenna with at least one good pass per day.

- 1. Access amsat.org
- 2. Click on Satellite Info
- 3. Select Pass Predictions from the pull-down menu

To Work a "Bird" (con't)

4. Select the SO-50 Satellite from the pull-down menu

5. Input your location data

(The Grid for Abq is DM65) (Abq.'s Elevation is 1500 meters)

6. Click on Calculate Position

(The software will post the Lat./Long.)

7. Click on Predict

The software will generate a list of details needed to work the listed, in this case, SO-50 satellite.

Adjust the number of Satellite passes to 25 to get a list for the next few days.

Show Predictions for: SO-50	<pre> for Next 10 Passes </pre>			
Calculate Latitude and Longitude from Gridsquare:	DM-65 Calculate Position			
c)r			
Enter Decimal Latitude:*	North ‡			
Enter Decimal Longitude:*	West ‡			
Elevation (Metres):	1500			
Predict				

To Work a "Bird" (con't)

Show Predictions for: SO-50 + for Next 10 + Passes					
Calculate Latitude and Longitude from Gridsquare:	DM60 Calculate Position				
Or					
Enter Decimal Latitude:*	30.5 North \$				
Enter Decimal Longitude:*	107 West ‡				
Elevation (Metres):	1500				
Predict					
Save my location for later use					

Two Good Passes

"Good" passes are those whose maximum elevation is >40 degrees. This would mean operators would have a clear view of the "bird" and a greatly increased chance of a successful contact(s).

AMSAT Online Satellite Pass Predictions - SO-50 View the current location of SO-50

Date (UTC)	AOS (UTC)	Duration	AOS Azimuth	Maximum Elevation	Max El Azimuth	LOS Azimuth	LOS (UTC)
05 Nov 16	19:15:29	00:10:22	257	10	37	100	19:25:52
05 Nov 16	20:54:53	00:13:24	330	71	265	159	21:08:17
05 Nov 16	22:38:11	00:06:04	284	3	258	229	22:44:15
06 Nov 16	09:24:44	00:10:54	158	11	119	56	09:35:38
06 Nov 16	11:03:02	00:14:08	215	59	289	23	11:17:10
06 Nov 16	12:47:03	00:08:58	276	6	316	356	12:56:01
06 Nov 16	19:40:09	00:12:31	346	24	40	125	19:52:40
06 Nov 16	21:20:39	00:12:17	316	23	260	182	21:32:56
07 Nov 16	09:48:31	00:13:27	183	31	100	40	10:01:58
07 Nov 16	11:29:10	00:13:06	238	22	293	13	11:42:16

To Work a "Bird" (con't)

AMSAT Online Satellite Pass Predictions - SO-50 View the current location of SO-50					
Date (UTC) AOS (UTC) Duration AOS Azimuth Maximum Elevation Max El Azimuth LOS Azimuth LOS (UTC)					
5 Nov 20:54 13 min. 330 deg. 71 deg. 254 deg 159 deg. 21:08					

Translation: On Nov. 5, at 20:54z (2:54PM MDT) use a compass to find 330 deg. & point the antenna in that direction. Listen on memory freq. #1 until you capture the satellite. Continue in an arc to 71 deg. and then down to 159, where you will lose the satellite's signal, 13 min. later.

Memory #	Tx. Freq. w/PL 67	Rev. Freq.
#1	145.840	436.805
#2	145.845	436.800
#3	145.850	436.795
#4	145.855	436.790
#5	145.860	436.785

In Conclusion

* Hams & Sats Have a Long History & an Exciting Future * Ham Satellites Offer a Great Opportunity for S.T.E.M. * Working the "Birds" is Easy, even with Just an HT * The Home-Made Sat Antennas Shown Here, Work Well * "Elk" Antennas are Good for Portable Operation * The Dual Band "Arrow" Antenna is Popular * The AMSAT Website is a Useful Resource (amsat.org) * Awards for SAT contacts are Worthwhile Goals This Slide Show is available on the HDARC website.

Resources:

<u>ARRL Satellite Handbook</u> (Sat. History), AMSAT.org (Antenna Design & Pass Data,) KG0ZZ Antenna Design (<u>https://www.youtube.com/watch?v=Hy_XwvMmIro</u>),